iPhone 4拆解分析

如对此感兴趣,请拨打电话02l-228l84l9,QQ微信,微博
诚招各地区市场各行业应用推广合作伙伴。查看详细联系方式
欢迎提出产品建议,思路,合作信息,我们计入产品股份,享有对应的分红权。

 “苹果历史上最成功的产品”——该公司CEO乔布斯给予了此评价的是2010年6月24日上市的“iPhone 4”。上市的三天内,全球销售了170万台。iPhone 4因采用全新的“iOS 4”系统,除支持多任务(multi-tasking)作业外,还配备了电子书应用“iBooks”和可视电话等功能,比前几代产品的易用性更高。另一方面,iPhone系列也迎来了成熟期。iPhone 4发表时,乔布斯强调的是9.3mm薄的机身、高达326ppi的显示器分辨率等硬件性能指标(表1)。“强调性能指标,不太像是苹果的风格”,许多日本工程师这样认为。

薄型化和成本削减

“很像是日本厂商开发的终端”。观察了拆解后机身内部的工程师异口同声地说(图1),因为有与元件制造商仔细磨合的痕迹,也确认了为提高成品率而下的功夫。随处可见与以前那种可称之为“粗糙”的设计迥异的精细。


设计手法大变,认为是为了薄型化和降低成本。例如,主板上装有“如此形状以前还没有见过”(一位手机设计工程师)的特殊形状的无线LAN/蓝牙模块(图2)。他说,“因要薄型化而安装面积有限,可以看出苹果事先对各机能区块事先精细地制定了尺寸和规格,并与部件厂商进行了细致的磋商调整”。相机模块也一样:使用了形状极为特殊的软性电路板,并将其复杂折叠后安装。

锂聚合物充电电池可看作是体现了成本削减意图的设计。“iPhone 3G”等此前机型,充电电池以强力双面胶带粘贴在机壳上。但此次,电池是在主板上以连接器连接,并且,还装有一个树脂衬底以方便取下电池(图3)。

 电池以外的部分也同样,有数个模块以连接器相连,各模块则用螺钉固定在机壳上(图4)。这与以前多采用粘接剂和双面胶的设计迥异。多名工程师都说:“用了这么多螺钉的苹果制品还没见过”。


图4 大量使用螺丝、连接器与iPhone 3G不同,iPhone 4使用了大量的螺丝和连接器。
  
这样设计的目的似乎在于,能以区块为单位更换和修理,从而降低制造成本。例如,在出货检查时,若发现不合格品,则只需更换有问题的区块即可。而随高功能化的部件成本上升、中国水涨船高的劳动成本导致的制造成本持续增加,推动了这种设计手法的采用。 设计方法虽变了,但许多主要部件仍从与“iPad”等此前机型相同的供应商处采购(表2)。继续使用同一供应商的部件,除易于降低成本外,还有可缩短部件认定作业的时间,从而缩短设计时间的好处。例如,处理器就与“iPad”一样,认为采用了韩国三星电子制造的“A4”。
 
大胆的天线设计
  
iPhone 4设计上最创新的点可以说是天线。“为提高灵敏度”乔布斯说,将天线机能从此前机型的内部放到了在机壳侧面(图5)。一位天线工程师为之乍舌:“可真是吃了豹子胆”。
  
首先,手机网用的主天线,不仅在机壳的侧面,而是与手机内部的另一天线结合构成的。机壳侧面焊接着形状复杂的金属片,认为是用来支持各个国家不同的多个波段。  

 
我们的天线工程师推测,之所以天线特意用2个部件组成,是“因为当需要微调频率特性等时,如果天线只是机壳部分,则需从模具开始重新制做”。实际上,手机内部的天线就装有认为用于调整特性的线圈和电容各1个。而据称其配备的电极作为支持多个频带的单体天线本身极小。所以将其看作是对机壳侧面天线起辅助作用的微调天线是妥当的。 但这一创新设计却产生了意想不到的副产品:因用户握住手机的方式,而发生了接收不稳定的现象,并因此而发展到集体诉讼的地步。这一“问题”很可能源于天线结构:接触易导致接收不稳定的手机左下方的狭缝附近,以及开盖端侧的露出的辐射电极,是两个天线的结合点(图5)。


图5 将部分机壳用作iPhone 4天线。图中为iPhone 4的主/副天线的构造及电路图。由日经电子推测绘制。
  
而子天线(WLAN、蓝牙、GPS用)似用作机壳上端一侧的辐射电极(图5)。机壳最上方的辐射电极狭缝两侧的辐射电极侧的侧面部只配备了电源按钮,另一端则为耳机插孔、音量控制等。电源按钮与耳机插孔与音量控制按钮不同,在通信时不会用到。因此,似将天线与按钮类的位置皆作了调整,以便不影响通信功能。

针对显示器的特别处理
高达326ppi的高分辨率显示器是iPhone 4的一大卖点。从拆解可以看出苹果公司对画质的追求。为了提高画质,iPhone 4将液晶面板、触控面板和机壳前端合为了一体。iPhone 3G没有一体化,液晶面板很容易分离。之所以一体化,认为是将上述几个部分用透明树脂粘合固定,以消除画质劣化的原因——空气曾界面上的光反射(图6)。当然,这种粘合对更换修理是不利的。也只有这一部分,与此次多采用螺钉、连接器以方便交换和修理的设计思想不同,是画质优先。


图6 液晶面板与触控面板和机壳前端的一体化。iPhone 4的液晶面板与触控面板和机壳前端是融为一体的。此举认为是为提升影像质量。而iPhone 3G上,这些部件都是分开的。

另外,在iPhone 4上市后,立即就有了画面上有部分出现了澹黄色的变色的报道。我们的工程师认为,“这是由于一体化使用的粘合剂造成的”。 iPhone 4采用的液晶面板与iPad相同,均为透过式的IPS类型。相较于iPhone 3G采用的半透过式液晶面板(透过式/反射式混合),一般画质要出色。然而,当在有外光影响的室外使用时,如果亮度不比半透过型的更高,则是人性会变差。

在显示器工程师协助下的分析表明,液晶面板的TFT开口率为52%(图7)。因追求高分辨率等,其开口率低于iPhone 3G的60%,因此在亮度上不利。因此,很可能在其他部份如背照灯和彩色滤光片上采取了措施以提升亮度。


图7 采用透过式液晶,开口率为52%。iPhone 4 采用了透过式液晶面板。其开口率为52%。而iPhone 3G则使用半透过式液晶面板。
 
相较于iPhone 3G,iPh one 4主板的安装密度要高得多。iPhone 3G将积层式主板与薄型化的锂聚合物充电电池并列,iPhone 4则改变了这种做法,从而使基板面积得以大幅缩小:基板去除边缘弯曲处的尺寸为86mm×18mm,而iPhone 3G则为84mm×54mm。 为此,iPhone 4使用了大量尺寸为0.4mm×0.2mm的“0402”部件。主板上安装的664个部件中,约1/3(227个)是0402零件(表3,图8a)。

表3 安装了227个“0402”零部件
 
iPhone 4不仅使用0402元件,还缩小了安装部件的间隔,以支持基板的小型化。仔细分析过基板的组装工程师表示,“iPhone 4与此前机型不同,其部件间隔几乎与日本厂商相同。甚至有比日本厂商还窄之处”。此外,iPhone 3G认为采用了8层基板,而iPhone 4则使用了10层基板(图8b、9)。


图8 以0402零部件及10层基板支持高密度封装。图中所示为安装在主板上的0402零部件范例(a),和10层主基板截面图(b)。
该10层基板被认为是由日本厂商制造,此外,多数0402部件和窄间距连接器(Fine-Pitch Connector)很可能也是日本厂商制造的。似是日本厂商制造的部件商有力地撑起了iPhone 4的双肋。
 


图9 安装面积小的主基板。主基板上安装的主要部件的功能、供货商如本图所示。主板面积比iPhone 3G要小很多。零部件功能、制造商等信息皆为日经电子经访谈及调查数据等推测而出。其中难以辨识的字符以“●”符号表示。

您现在的位置: 上海速嵌 >> 技术库 >> 正文

分享到:

  相 关 技 术

固顶技术qPad一站式高效办公
固顶技术电机控制应用于医疗化工电子设备器械工业机器人自动化作业系统
固顶技术嵌入式软硬件设计服务
固顶技术声音图像语音视频通信系统
固顶技术工业传感器64路数据采集和监控
固顶技术高精度16路传感器数据采集和处理
固顶技术GPS导航定位监控行业应用方案 LBS (Location Based Service)
固顶技术Samsung S3C2440/S3C6410/S5PV210 工业产品级主板和解决方案
固顶技术GIS系统Mapinfo格式嵌入式GPS导航应用
普通技术机械臂定制
普通技术非标机械臂
普通技术机械手定制
普通技术机械臂开发
普通技术机械臂设计
普通技术机械臂
普通技术双赢双屏
普通技术众筹开发
普通技术可穿戴解决方案
普通技术imx6som卡片式计算机评估板
普通技术imx6单板工控主板火星板
普通技术imx6单板工控主板
普通技术硬件定制
普通技术远程现场呈现替身机器人
普通技术智能脉搏手表
普通技术悠牌电脑桌
普通技术OMAP4460 Pandaboard
普通技术Exynos4412评估板
普通技术iMX6SOM评估板
普通技术OMAP4460评估板
普通技术OMAP5432评估板
普通技术MK802 Linux系统
普通技术多频段RFID 3G平板
普通技术超远距离RFID终端
普通技术智能打印POS机
普通技术工业级WM智能手机
普通技术工业级Android手机
普通技术身份证识别工业平板
普通技术工业级3G平板电脑
普通技术工业安卓手持终端
普通技术GPU性能比较
普通技术Raspberry Pi 树莓派
普通技术linux qt软件开发
普通技术手机开发制造的全流程
普通技术移动嵌入式数据库市场与技术
普通技术Linux嵌入式文件系统横向对比分析
普通技术小票打印机
普通技术移动支付刷卡对比
普通技术刷卡魔块
普通技术微型UPC电脑
普通技术安防套装
普通技术USB摄像头
普通技术在线购买
普通技术技术参数
普通技术安装使用
普通技术工厂案例
普通技术公司案例
普通技术超市案例
普通技术增值功能
普通技术视频监控
普通技术在线订购
普通技术增值功能
普通技术功能介绍
普通技术最值得关注的主要嵌入式产品市场
普通技术意法半导体推出内置9轴MEMS传感器的STM32 F3开发套件
普通技术安卓Android工业平板电脑工业显示器
普通技术阳光下可视高亮度大尺寸LED显示屏
普通技术TTL转LVDS转换模块
普通技术嵌入式系统开发
普通技术3D打印机
普通技术vTigerCRM简介
普通技术功能框图
普通技术CRM作用价值
普通技术CRM与企业挑战
普通技术CRM与企业决策
普通技术CRM基础理论
普通技术国内3D打印产业与市场现状
普通技术无线医疗的机遇与挑战
普通技术EMI 来自哪里?EMI 如何通过介质干扰电路
普通技术硬件隔离保护设计 接口i2c rs232串口 485 can
普通技术Android平板电脑控制串口设备
普通技术摄像头汽车防碰撞系统
普通技术大运航海
普通技术系统说明
普通技术基于嵌入式S3C2440的船舶导航系统设计
普通技术智能家居
普通技术微虎CRM
普通技术ADI全系列仿真器ADZS-USB-ICE
普通技术九维航姿微系统电子罗盘电子陀螺仪
普通技术电子货架标签
普通技术ADDA-PWM板
普通技术网络音频板
普通技术电子产品制造服务
普通技术网络摄像头模块方案
普通技术警用警务警帽录像系统
普通技术S3C2416手持机
普通技术S3C6410手持机型
普通技术船舶船载电子海图系统和自动识别系统
普通技术HMI技术在工业控制领域的广泛应用
普通技术嵌入式组态软件和标准版组态软件的区别
普通技术光伏正弦波逆变电源
普通技术汽车电脑车载电脑汽车中控
普通技术健康监护系统
普通技术音频视频无线传输模块
普通技术广告机-支持无线网络
普通技术人体防摔安全气囊
普通技术iPhone 4拆解分析
普通技术Stellaris(群星)系列 ARM
普通技术嵌入式开发流程详解
普通技术系统移植和集成
普通技术嵌入式设备驱动程序开发
普通技术板级支持包(BSPs) 开发
普通技术电路原理图设计开发
普通技术PCB设计布线Layout
普通技术OMAP-L138 开发板
普通技术互动式手写电子白板
普通技术魔杖遥控器
普通技术便携式车载逆变器
普通技术电子血压计方案
普通技术IC智能卡刷卡机
普通技术汽车定位/调度/刷卡交费终端
普通技术汽车检测仪
普通技术微型潜水电脑
普通技术压力检测系统
普通技术网络音频终端
普通技术HMI人机界面定制开发
普通技术全球MEMS应用及其市场状况
普通技术EMC设计
普通技术ARM嵌入式数控系统
普通技术基于MSP430内嵌温度传感器的温度告警系统
普通技术语音通信系统中的噪声产生和影响
普通技术MP3算法实现
普通技术ITU G.729(CS-ACELP共扼结构-代数码激励线性预测)语音算法
普通技术ITU G.729(CS-ACELP共扼结构-代数码激励线性预测)语音算法
普通技术ITU G.723.1(ACELP代数码激励线性预测)语音算法
普通技术EVRC(Enhanced Variable Rate Codec)增强型多速率语音算法
普通技术语音通信系统中的回声产生和影响
普通技术语音通信系统中的回声产生和影响
普通技术AMR Wideband(Adaptive Multi Rate)宽带自适应多速率语音算法
普通技术AMR(Adaptive Multi Rate)自适应多速率语音算法
普通技术专业的音频视频算法处理
普通技术AAC(Advanced Audio Coding)
普通技术土壤水温监测系统
普通技术公司新闻
普通技术压力控制系统
普通技术中央空调控制系统
普通技术有关传感器与数据采集卡
普通技术S3C6410开发平台
普通技术S3C6410 移植Android 内核
普通技术S5PC110开发板
普通技术条形码识别软件
普通技术嵌入式系统硬件基础
普通技术各种认证,设计制造须知
普通技术Wiegand协议
普通技术使用PWM调光
普通技术TI DM6467 1080 高清编解码
普通技术电子设备产品机箱外壳设计
普通技术有源噪声消除 (ANC)
普通技术数字音频广播
普通技术汽车仪表板
普通技术汽车门禁系统
普通技术汽车车身控制器
普通技术车用信息娱乐
普通技术车用视觉控制
普通技术便携产品个性设计启示
普通技术投影仪、高清和低功耗 -- 多元化的手机设计
普通技术胎压计方案
普通技术G.723.1编解码算法的DSP实现
普通技术G.729A语音编码实时实现在TMS320VC5416 DSP上
普通技术GPRS数据传输终端
普通技术音频编解码标准汇总
普通技术语音识别技术简述
普通技术Iridix VEE
普通技术如何让便携式多媒体系统实现高质量音频
普通技术新AMR WB+音频/语音编解码器将在SoCIP2008展示
普通技术精心打造音视频领域的中国芯
普通技术PureSpeech蓝牙音频增强技术
普通技术语音识别应用中DSP
普通技术VoIP综合应用技术概述
普通技术VoIP中语音压缩编码技术的研究与性能分析
普通技术EVRC and G.729AB Transcoding
普通技术怎样选择嵌入式媒体处理器
普通技术TI达芬奇技术再战视频转码市场
普通技术土豆网紧跟Adobe步伐第一时间推出"清晰版"
普通技术VoIP电话发展简史
普通技术H.264简介
普通技术Internet语音通信中的回声消除技术